

COLLEGIO DEI COSTRUTTORI EDILI

Pubblicato da

AUTONOME PROVINZ BOZEN - SÜDTIROL

PROVINCIA AUTONOMA DI BOLZANO - ALTO ADIGE

BAUBERATUNG KONS. G.M.B.H. eine Gesellschaft des Kollegium der Bauunternehmer

PREMESSA

Calcestruzzo – un materiale con caratteristiche particolari.

Senza calcestruzzo oggigiorno il mondo delle costruzioni non è pensabile. Ovunque venga impiegato, dall'edilizia residenziale alla costruzione di ponti e gallerie, questo materiale deve essere utilizzato con perizia per ottenere da esso la massima prestazione in termini di qualità richiesta. La presente linea guida vuole rappresentare in modo semplice e comprensibile attraverso consigli concreti provenienti dal mondo pratico un piccolo vademecum di tecnologia del calcestruzzo. Si vuole quindi dare in mano al costruttore un pratico ausilio iniziando dalla scelta corretta del calcestruzzo attraverso il trattamento di questo fino ad arrivare ai consigli per evitare gli errori tipici.

Le singole tematiche vengono proposte sempre con lo stesso principio: sulla pagina di sinistra sono descritte le informazioni tecniche e giuridiche di base, mentre sulla pagina di destra sono rappresentate tramite immagini la loro messa in pratica e le relative ripercussioni.

E' quindi possibile crearsi in poco tempo una visione generale delle tematiche alle quali prestare attenzione per ottenere un calcestruzzo di qualità e per potere fornire al cliente un prodotto di qualità.

Costruendo opere in calcestruzzo di elevata qualità e considerando la così aumentata vita utile delle opere stesse, è così possibile un risparmio dei costi.

Nella presente linea guida non si garantisce la completezza delle informazioni contenute.

Requisiti e scelta del calcestruzzo	Preparazione in cantiere
4	O .
Trasporto e posa in opera del calcestruzzo	Compattazione del calcestruzzo
8	10
Stagionatura e protezione del calcestruzzo	Prove su calcestruzzo in cantiere
12	14
Prove sul calcestruzzo indurito	Getto in clima freddo o caldo
16	18
Difetti tipici	Annotazioni Riferimenti
20	22

Classi di resistenza

C8/10	C12/15	C16/20	C20/25	C25/30
C28/35	C30/37	C32/40	C35/45	C40/50

Significato: p. es. C25/30 | C = dall'inglese "concrete" = calcestruzzo 25 indica la resistenza cilindrica in N/mm² | 30 indica la resistenza cubica in N/mm²

Classi di consistenza

Classe di consistenza	abbassamento al cono [mm]	Descrizione della consistenza
S1	da 10 a 40	Umida
S2	da 50 a 90	Plastica
S3	Da 100 a 150	Semifluida
S4	Da 160 a 200	Fluida
S5	≥ 210	Superfluida

Granulometria

Dimensione massima dell'aggregato – D _{max} [mm]				
	4	8	16	32

La dimensione massima (D_{max}) dell'aggregato non deve superare (vedi figura) 1/3 della minore dimensione della parte costruttiva, essere 0,8 volte minore del copriferro e essere 1,25 volte del minore interferro.

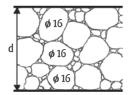
Classe	Condizioni ambientali	Esempi di applicazione	
Assenz	a di rischio di corrosione o attacco	Calcestruzzo non arma-	
X0	Assenza di rischio di corrosione o attacco	to all'interno di edifici	
Corrosi	one indotta da carbonatazione	Fondazioni armate.	
XC1	Asciutto o permanentemente bagnato	elementi costruttivi	
XC2	Bagnato, raramente asciutto	in esterno, elementi	
XC3	Umidità moderata	costruttivi impermeabili	
XC4	Ciclicamente asciutto e bagnato	all'acqua, etc.	
	ione indotta da cloruri esclusi quelli provenienti da di mare		
XD1	Umidità moderata	Parcheggi, piscine,	
XD2	Bagnato, raramente asciutto	depositi per sale, etc.	
XD3	Ciclicamente asciutto e bagnato		
Attacco	o da gelo/disgelo con o senza disgelanti		
XF1	Moderata saturazione d'acqua, in assenza di agente disgelante	Murature, muri di	
XF2	Moderata saturazione d'acqua, in presenza di agente disgelante	sostegno, parti di ponti,	
XF3	Elevata saturazione d'acqua, in assenza di agente disgelante	pilastri, spalle, etc.	
XF4	Elevata saturazione d'acqua, in presenza di agente disgelante		
Attacco	o chimico ambientale	Elementi costruttivi di	
XA1	Ambiente chimicamente debolmente aggressivo	depuratori, di pavimen-	
XA2	Ambiente chimicamente moderatamente aggressivo	tazioni aggredibili, di	
XA3	Ambiente chimicamente fortemente aggressivo	scarichi industriali, etc.	
Attacco	per usura meccanica		
XM1	Usura meccanica moderata	Pavimenti industriali,	
XM2	Usura meccanica intensa	carreggiate in calcestruzzo, etc.	
XM3	Usura meccanica estrema	caicestruzzo, etc.	

All'ordine sono sempre da indicare! CLASSE DI RESISTENZA; CONSISTENZA E DIMENSIONE MASSIMA DELL'AGGREGATO

Solai e scale	
Travi	C28/35
Pilastri	
Muri di cantine	C25/30
Fondazioni	C25/30

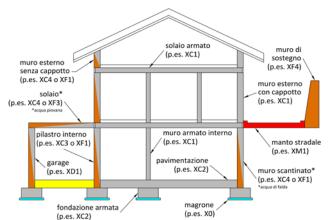
Esempio:

Indicazione della classe del calcestruzzo in disegni di progetto


Importante per la statica (
della struttura!

La classe di consistenza dipende dal tipo, dallo spessore e dalle dimensioni dell'elemento costruttivo come dal grado di armatura.

Importante per la lavorazione!


Per esempio:

Spessore d [mm]	1/3 di d [mm]	D _{max} [mm]
50	16,7	16
100	33,3	32

Importante per lavorabilitá e armatura!

Esempio per classi d'esposizione

Importante per la durabilità dell'opera!

Casseforme

Tipi di cassaforma:

- cassaforma in legno (materiale assorbente)
- cassaforma in metallo oppure materiale plastico (materiali non assorbenti)

La scelta è importante per la struttura e finitura superficiale del calcestruzzo.

Disarmante

Il disarmante serve come mezzo di distacco tra calcestruzzo e cassaforma. Viene applicato in modo uniforme e sottile tramite nebulizzatore sulla superficie della cassaforma. Il disarmante da utilizzare dipende da tipo di cassaforma e temperatura. Va rispettata la relativa specifica tecnica.

Armatura, distanziatori e copriferro

Armatura:

L'armatura è da eseguirsi secondo i disegni di progetto.

Distanziatori:

I distanziatori sono necessari per il mantenimento del copriferro. Garantiscono la distanza necessaria tra ambiente esterno e armatura (puntuale o superficiale).

Copriferro:

Il copriferro è importante per garantire la durabilità della struttura. Lo spessore dipende principalmente dalla classe di esposizione: con più questa è elevata maggiore sarà il copriferro richiesto.

Pressione su cassaforma, impermeabilizzazione della cassaforma

Pressione su cassaforma:

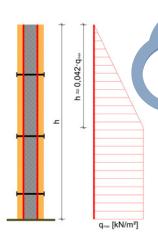
La pressione data dal calcestruzzo fresco va prinicipalmente presa in considerazione nelle casseforme verticali come per esempio in murature e pilastri. La pressione data dal calcestruzzo fresco è influenzata soprattutto dalla velocità di getto, dalla consistenza, dal comportamento alla presa e dall'altezza dell'elemento costruttivo.

Impermeabilizzazione:

Le casseforme devono essere rese impermeabili (nastri isolanti, silicone).

Pulizia:

La superficie della cassaforma e l'armatura devono essere prive di sporcizia!



Controllare che le superfici delle casseforme siano pulite e senza danni! Rispettare il copriferro!

Consegna e tempi di trasporto

LUOGO: Dove? | TEMPO: Quando? | QUANTITÀ: Quanto? (m³)

Modalitá di getto

Gru (tramoggia) | Pompa | Canaletta

Posizionamento sicuro di camion e pompa

Per evitare un ribaltamento del mezzo di trasporto questo deve essere posizionato assieme alla pompa su un terreno adatto.

Tempi di attesa

In caso di tempi d'attesa e/o tempi di preparazione prolungati va evitata tramite additivo di tipo ritardante una presa anticipata del calcestruzzo.

Quota di caduta e di getto

La quota di caduta deve essere mantenuta la più bassa possibile per evitare una segregazione nel calcestruzzo! Dipende soprattutto dalla consistenza e dal diametro dell'aggregato.

- · Quota consigliata = max. 1,50 m
- In caso di calcestruzzo faccia a vista la quota di caduta deve essere ridotta a massimo 1.0 m.

Eventualmente utilizzare tubi di caduta!

Aggiunta di acqua in cantiere

Un'aggiunta di acqua che porta ad uno superamento del massimo contenuto non è consentita poiché porta ad un peggioramento delle caratteristiche di resistenza del calcestruzzo indurito.

Per aumentare la lavorabilità si dovrebbero utilizzare unicamente additivi fludificanti.

Utilizzare DPI; sui muri pericolo di caduta!

Vibratore ad ago o vibratori a parete

Vibratore ad ago (o ad immersione):

Utilizzabile in tutte la strutture in calcestruzzo armato eccetto in spazi ristretti. Il diametro del vibratore dipende dalla dimensione dell'elemento costruttivo.

Vibratori a parete:

Utilizzabile in spazi ristretti, laddove il vibratore ad ago (o ad immersione) non è utilizzabile.

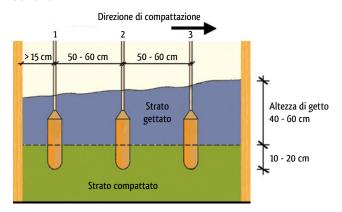
Tempo di vibrazione, immersione ed emersione

Il vibratore va immerso velocemente e verticalmente. Va vibrato fino a quando non emergono più bolle d'aria. L'emersione va eseguita lentamente in modo che si possa formare una superficie chiusa e che le bolle d'aria possano uscire verso l'esterno.

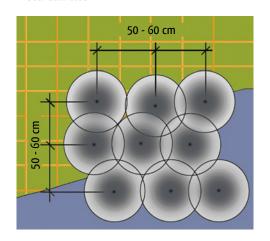
Regola pratica:

La distanza di immersione espressa in "cm" non deve essere maggiore al diametro dell'ago espresso in "mm". Il limite superiore deve essere tra 50 cm e 60 cm. Per tempi di vibrazione troppo lunghi c'è rischio di segregazione.

Post-compattazione


La post-compattazione è particolarmente necessaria per elementi costruttivi verticali ed elevati, ma anche massivi, nei primi 20 cm verso la superificie! Si possono così ridurre nei calcestruzzi faccia a vista i vuoti sottostanti i ferri di armatura orizzontali e i pori di compattazione nei primi 50cm.

SCC = self compacting concrete


Per calcestruzzo SCC si intende un calcestruzzo autocompattante che non necessita di compattazione meccanica!

Sezione

Vista dall'alto

Perché e come?

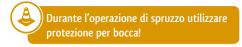
Una protezione accurata è necessaria per evitare fessure e difetti superficiali.

La protezione offre riparo da:

· Evaporazione, freddo e caldo

Motivi per la protezione:

- ostacolare l'essiccamento attraverso irraggiamento solare e vento
- · riduzione della differenza di temperatura
- · ostacolare i danni da gelo durante l'indurimento del calcestruzzo
- · ostacolare il riscacquo attraverso pioggia e acqua corrente
- ostacolare il danneggiamento dell'interfaccia tra calcestruzzo e armatura dovuto a anticipato disarmo delle casseforme e anticpata applicazione di carichi
- etc.


Tipi di protezione:

- coperture umide
- spruzzatura regolarmente con acqua (acqua non troppo fredda)
- · inumidimento delle casseforme in legno
- protezione delle cassaforme in metallo da un irraggiamento solare troppo intenso
- · copertura con teli isolanti e pellicole di materiale polimerico.
- · apporto di composti formanti strati protettivi
- etc.

Durata della protezione

La durata della protezione dipende principalmente dalla composizione, dallo sviluppo della presa e dell'indurimento del calcestruzzo, dalla temperatura ambientale e da quella del calcestruzzo fresco al momento del getto.

Sono anche da tenere in considerazione gli effetti ambientali come irraggiamento solare e le dimensioni dell'elemento costruttivo.

Chi, quando e dove?

Prove per la qualifica

Il produttore deve dimostrare attraverso le prove di qualifica l'ottenimento dei requisiti qualitativi richiesti.

Prove di accettazione

Il Direttore dei Lavori controlla la conformità con i risultati delle prove di qualifica. I costi delle prove non previste per legge o da contratto sono a carico della committenza.

Collaudo

Controllo eseguito dal collaudatore sull'opera. I costi sono a carico della committenza.

Determinazione della resistenza a compressione

Produzione di campioni di prova – cubi 15x5x15 cm per prova di resistenza a compressione secondo D.M. 14/01/2008. Numero e frequenza di prelievo dipendono dalla quantità di calcestruzzo e riferiti all'elemento costruttivo.

Confezionamento e maturazione dei campioni di prova

Il confezionamento e la maturazione dei campioni di prova deve essere eseguita da persone qualificate e con attrezzature conformi alle normative. Confezionamento e maturazione dei campioni di prova non eseguiti secondo norma portano ad avere risultati falsati.

Tolleranze

Prova	Valore nominale	Valore inferiore	Valore superiore
Prova di consistenza sec. UNI EN 12350-2	sec. norma min – max es. 160 – 200	10 mm	20 mm
Legante di cemento	sec. norma	3 %	3 %
Rapporto acqua/legante sec. ÖNORM B 3303 2002	sec. norma	nessuna	< 0,02
Contenuto d'aria sec. UNI EN 12350-7	come da prova di qualifica	0,5%	_
Massa volumica secondo UNI EN 12350-7	come da prova di qualifica	30 kg/m³	30 kg/m³

Prove su calcestruzzo fresco

Consistenza - Prova slump (abbassamento al cono)

Contenuto d'acqua

La determinazione del contenuto d'acqua si esegue attraverso arrostimento del calcestruzzo (metodo con uso di alcol) oppure attraverso il metodo del forno a microonde.

Contenuto d'aria

Il contenuto d'aria nel calcestruzzo fresco è determinato per mezzo del porosimetro.

Massa volumica

La massa volumica del calcestruzzo fresco è definita come rapporto tra massa e volume di calcestruzzo costipato.

D = m/V

D... massa volumica del calcestruzzo fresco in kg/m3

m... massa in kg

V... volume in m3

Temperatura

La temperatura del calcestruzzo fresco non dovrebbe essere inferiore a $+10^{\circ}$ C e superiore a $+30^{\circ}$ C.

Chi e come? (responsabilità)

Le prove sui materiali per il collaudo della costruzione devono essere eseguite in laboratori autorizzati da Ministero!

Il Direttore dei Lavori è responsabile per la richiesta al laboratorio dell'esecuzione delle prove. Direttore dei Lavori e impresa costruttrice sono responsabili per la maturazione e il trasporto dei campioni di prova al laboratorio di prova.

Prova di resistenza alla compressione secondo UNI EN 12390-3:
 <u>Limiti</u>: R_m = R_{ck}+3,5 N/mm² (< 1.500 m³ di miscela omogenea)
 <u>Esecuzione</u>: si esegue su campioni cubici previa maturazione di 7 o 28 giorni portandoli fino a rottura.

2 metodi per la valutazione dei risultati:

- metodo B: >1.500 m3 di miscela omogenea, valutazione statistica
- Prova di permeabilità all'acqua secondo UNI EN 12390-8:
 <u>Classe di esposizione:</u> XC3, XC4
 <u>Limiti:</u> dipendente da copriferro (per esempio 30mm oppure 50mm)
 <u>Esecuzione:</u> si esegue su campioni sottoposti a pressione d'acqua secondo norma dopo un tempo prestabilito si esegue la misurazione della massima penetrazione d'acqua.
- Prova di gelo/disgelo secondo ÖNORM 3303:1983
 <u>Classe di esposizione</u>: XF3
 <u>Limiti</u>: diminuzione massima del modulo elastico statico del 25%
 <u>Esecuzione</u>: si esegue su 3 campioni di prova sottoposti a max.
 50 cicli di gelo/disgelo.
- Prova di gelo/disgelo in presenza di sali secondo ÖNORM 3303:1983
 Classe di esposizione: XF2, XF4
 Limiti: misurazione del materiale distaccatosi dai campioni di prova

<u>Limiti:</u> misurazione del materiale distaccatosi dai campioni di prova dopo 50 cicli di gelo/disgelo.

XF2 ≤200 g/m² XF4 ≤100 g/m²

Esecuzione: si esegue sulla superficie esposta di campioni di prova.

Determinazione della resistenza a compressione

Determinazione della profon- (dità di penetrazione dell'acqua

Determinazione del modulo elastico statico

Determinazione della (resistenza al gelo e disgelo

IN CASO DI NON RISPETTO: Peggioramento della fiunzionalità, portata e utilizzabiltà

Getto in clima freddo - sotto 0°C

- · Cemento: cementi con elevata velocità d'indurimento (p. es. 42,5R)
- · Additivi: accelerante di presa
- · Acqua d'impasto: calda
- · Aggregati: riscaldare, coprire
- · Periodo di getto: tarda mattinata primo pomeriggio

Getto in clima caldo - sopra +30°C

- Cemento: cementi con bassa velocità d'indurimento (p. es. 32,5N)
- Additivi: ritardante di presa
- Acqua d'impasto: fredda
- · Aggregati: raffreddare
- · Periodo di getto: mattina o sera

Il corretto modo di procedere à determinante per qualità del manufatto! Il procedimento é da concordare con la D. L..

Copertura del manufatto con teli in polimero

Difetti tipici 20

Fessure

Fessure da ritiro e da temperatura

<u>Possibili cause</u>: Stagionatura e protezione maleseguita; elevato contenuto d'acqua; elevata produzione di calore d'idratazione; fughe di espansione non sufficienti oppure non presenti.

<u>Prevenzione</u>: la stagionatura e protezione devono essere eseguite secondo le norme; scelta corretta del calcestruzzo (legante con bassa produzione di calore d'idratazione).

Fessure di assestamento

<u>Possibili cause</u>: Disarmo della cassaforma anticipato e/o applicazione del carico prematura; spostamento dell'armatura durante il getto e compattazione.

<u>Prevenzione</u>: da concordare con progettista o Direzione dei Lavori; lasciare casseforme o struttura di supporto per tempi più lunghi; controllo della posizione dell'armatura e dei collegamenti di questa.

Nidi di ghiaia

<u>Possibili cause:</u> Segregazione durante compattazione; cassaforma non stagna.

Prevenzione: da concordare con Direzione dei Lavori.

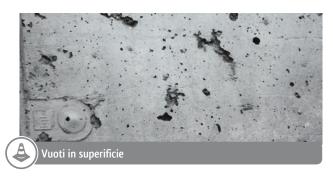
Vuoti in superficie

<u>Possibili cause:</u> Compattazione maleseguita; applicazione non corretta del disarmante; composizione errata del calcestruzzo; disarmante errato; cassaforma non stagna; lavorazione errata.

Prevenzione: Consulenza da parte di un esperto.

Affioramenti

<u>Possibili cause:</u> Scelta errata del legante; elevata umidità; elevata porosità; pioggia su superfici appena disarmate.


<u>Prevenzione:</u> concordare azioni preventive con il fornitore di calcestruzzo.

21 Difetti tipici

Appunti			

23 Riferiment

Questa linea guida fa riferimento alle seguenti norme:

D.M. 14/01/2008	Nuove norme tecniche delle costruzioni
Circolare 617 del 02.02.2009	Istruzione per l'uso delle "nuove norme tecniche delle costruzioni" D.M. 14/01/2008
UNI EN 206-1	Calcestruzzo - Specificazione, prestazione, produzione e conformità
UNI 11104	Calcestruzzo - Specificazione, prestazione, produzione e conformità - Istruzioni complementari per l'applicazione della EN 206-1
UNI EN 12350-2	Prova sul calcestruzzo fresco - Parte 2: Prova di abbassamento al cono
UNI EN 12350-6	Prova sul calcestruzzo fresco - Parte 6: Massa volumica
UNI EN 12350-7	Prova sul calcestruzzo fresco - Parte 7: Contenuto d'aria - Metodo per pressione
UNI EN 12390-3	Prove sul calcestruzzo indurito - Parte 3: Resistenza alla compressione dei provini
UNI EN 12390-8	Prove sul calcestruzzo indurito - Parte 8: Profondità di penetrazione dell'acqua sotto pressione

ÖNORM B 3303:1983 Betonprüfung

All'opuscolo hanno collaborato:
Ufficio Geologia e prove materiali
Bauberatung Kons. G.m.b.H.
Dott. Ing. Peter Endrich
Dott. Ing. Alex Herbst
Dott. techn. Dipl.-Ing. Dietmar Tomaseth

COLLEGIO DEI COSTRUTTORI EDILI

Collegio dei Costruttori Edili della Provincia Autonoma di Bolzano Via Macello 57 | I-39100 Bolzano | Tel. 0471 28 28 94 Fax 0471 26 39 01 | info@coll.edile.bz.it | www.coll.edile.bz.it